Средние показатели динамики

При наличии исчерпывающих данных об изменении момент-ного показателя его средний уровень исчисляется по формуле средней арифметической взвешенной для интервального ряда с разностоящими уровнями:

где t – число периодов времени, в течение которых уровень не изменялся.

где t – число периодов времени, в течение которых уровень не изменялся.

Если промежутки времени между соседними датами равны друг другу, т. е. когда мы имеем дело с равными (или примерно равными) интервалами между датами (например, когда известны уровни на начало каждого месяца или квартала, года), тогда для моментального ряда с равностоящими уровнями расчет среднего уровня ряда производим по формуле средней хронологической:

Для моментального ряда с разностоящими уровнями расчет среднего уровня ряда производится

Для моментального ряда с разностоящими уровнями расчет среднего уровня ряда производится по формуле:

Выше шла речь о среднем уровне рядов динамики абсолютных величин. Для рядов динамики

Выше шла речь о среднем уровне рядов динамики абсолютных величин. Для рядов динамики средних и относительных величин средний уровень нужно исчислять исходя из содержания и смысла этих средних и относительных показателей.

Средний абсолютный прирост

показывает, на сколько единиц увеличивался или уменьшался уровень по сравнению с предыдущим в среднем за единицу времени (в среднем ежемесячно, ежегодно и т. д.). Средний абсолютный прирост характеризует среднюю абсолютную скорость роста (или снижения) уровня и всегда является интервальным показателем. Он вычисляется путем деления общего прироста за весь период на длину этого периода в тех или иных единицах времени:

где Δ – цепные абсолютные приросты за последовательные промежутки времени;

где Δ – цепные абсолютные приросты за последовательные промежутки времени;

n – число цепных приростов;

у0 – уровень базисного периода.

В качестве основы и критерия правильности исчисления среднего темпа роста (как и среднего абсолютного прироста) можно использовать в роли определяющего показателя произведение цепных темпов роста, которое равно темпу роста за весь рассматриваемый период. Таким образом, перемножив n цепных темпов роста, получается темп роста за весь период:

Должно соблюдаться равенство:

Должно соблюдаться равенство:

Данное равенство представляет формулу простой средней геометрической

Данное равенство представляет формулу простой средней геометрической

Из этого равенства следует:

где n – число уровней ряда динамики;

где n – число уровней ряда динамики;

Т1, Т2, Тп – цепные темпы роста.

Средний темп роста, выраженный в форме коэффициента, показывает, во сколько раз увеличивался уровень по сравнению с предыдущим в среднем за единицу времени (в среднем ежегодно, ежемесячно и т. п.).

Для средних темпов роста и прироста сохраняет силу та же взаимосвязь, которая имеет место между обычными темпами роста и прироста:

Средний темп прироста (или снижения), выраженный в процентах, показывает, на

Средний темп прироста (или снижения), выраженный в процентах, показывает, на сколько процентов увеличивался (или снижался) уровень по сравнению с предыдущим в среднем за единицу времени (в среднем ежегодно, ежемесячно и т. п.). Средний темп прироста характеризует среднюю интенсивность роста, т. е. среднюю относительную скорость изменения уровня.

Перейти на страницу: 1 2 3