Теоретические основы и основные понятия статистики

Для статистической методологии теоретической базой является диалектико-материалистическое понимание законов процесса развития общества. Вследствие этого статистика нередко применяет такие категории, как количество и качество, необходимость и случайность, закономерность, причинность и др.

Основные положения статистики базируются на законах социальной и экономической теории, так как именно они рассматривают закономерности развития общественных явлений, определяют их значение, причины и последствия для жизни общества. С иной стороны, законы многих общественных наук созданы на основе показателей статистики и закономерностей, выявленных с помощью статистического анализа, вследствие этого можно сказать, что связь между статистикой и другими общественными науками является бесконечной и непрерывной. Статистика устанавливает законы общественных наук, а они, в свою очередь, корректируют положения статистики.

Теоретическая основа статистики также близко связана с математикой, так как для измерения, сравнения и анализа количественных характеристик необходимо использовать математические показатели, законы и методы. Глубокое изучение динамики явления, его изменения во времени, а также взаимосвязи его с другими явлениями невозможны без применения высшей математики и математического анализа.

Очень часто статистическое исследование опирается на разработанную математическую модель явления. Такая модель теоретически отображает количественные соотношения изучаемого явления. При ее наличии задача статистики состоит в численном определении параметров, входящих в модели.

При оценке финансового состояния предприятия нередко используют скоринговую модель А. Альтмана, где уровень банкротства Z вычисляется по следующей формуле:

Z = 1,2x1 + 1,4x2 + 3,3x3 + 0,6x4 + 10,0x5,

где x1 – отношение обратного капитала к сумме активов фирмы;

x2 – отношение нераспределенного дохода к сумме активов;

x3 – отношение операционных доходов к сумме активов;

x4 – отношение рыночной стоимости акций фирмы к общей сумме долга;

x5 – отношение суммы продаж к сумме активов.

По оценке А. Альтмана, при Z < 2,675 фирме угрожает банкротство, а при Z > 2,675 финансовое положение фирмы вне опасения. Чтобы получить эту оценку, надо подставить в формулу неизвестные х1, x2, x3, x4 и x5, которые являются определенными показателями строк баланса.

Особенно большое распространение в статистической науке получили такие направления математики, как теория вероятностей и математическая статистика. В статистике употребляются операции, которые прямым образом рассчитываются с помощью правил теории вероятностей. Это выборочный метод наблюдения. Основное из этих правил – ряд теорем, выражающих закон больших чисел. Суть этого закона заключается в исчезновении в сводном показателе элемента случайности, с которой связаны индивидуальные характеристики, по мере объединения в нем все большего их числа.

Математическая статистика также близко связана с теорией вероятностей. Рассматриваемые в ней задачи можно отнести к трем категориям: распределение (структура совокупности), связи (между признаками), динамика (изменение во времени). Широко используется анализ вариационных рядов, прогнозирование развития явлений осуществляется с помощью экстра-поляций. Причинно-следственные связи явлений и процессов вводятся с помощью корреляционного и регрессионного анализа. Наконец, статистическая наука обязана математической статистике такими важнейшими своими категориями и понятиями, как совокупность, вариация, признак, закономерность.

Статистическая совокупность относится к основным категориям статистики и является объектом статистического исследования, под которым понимается планомерный научно обоснованный сбор сведений о социально-экономических явлениях общественной жизни и анализ полученных данных. Для того чтобы осуществить статистическое исследование, нужна научно аргументированная информационная база. Такой информационной базой является статистическая совокупность – совокупность социально-экономических объектов или явлений общественной жизни, объединенных общей связью, качественной основой, но отличающихся друг от друга некоторыми признаками (например, совокупность домохозяйств, семей, фирм и т. д.).

С точки зрения статистической методологии статистическая совокупность – это множество единиц, обладающих такими характеристиками, как однородность, массовость, определенная целостность, наличие вариации, взаимозависимость состояния отдельных единиц.

Перейти на страницу: 1 2 3